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Motion of Multiple Junctions: A Level Set Approach*
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A coupled tevel set method for the motion of multiple junctions is
proposed. The new method extends the "Hamilton-Jacobi' level set
formulation of Osher and Sethian. It retains the feature of tracking
fronts by following level sets and allows the specification of arbitrary
velocities on each front. The ditfusion equation is shown to generate
curvaiure dependent motion and this is used to develop an algorithm to
move multiple junctions with curvature-dependent speed. Systems of
reaction diffusion equations are shown ta possess inherent properties
which prohibit efficient numetical solutions when applied to curvature-

dependent motion. '€ 1994 Academie Piess, Inc.

L. INTRODUCTION

This article explores algorithms for the motion of multi-
ple junctions. In many situations, e.g., crystal growth, a
material is composed of three or more phases. The interfaces
between the phases move according to some law. If the
material is a metal and its grain orientation is different in
cach region, then an isotropic surface energy means that the
velocity is the mean curvature of the interface. Or the
velocities of the interfaces may depend on the pair of phases
in contact; c.g., a different constant velocity on cach inter-
[ace, as in Fig. 1.

When there are only two regions and one interface
separating them, the “Hamilton-Jacobi” level set formula-
tion introduced by Osher and Sethian [{57 applies. The
resulting numerical formulation allows fronts to sclf-inter-
sect, develop singularities, and change topology. The
Osher-Sethian algorithm, if used in Fig, {1, would produce a
boundary between regions that has a non-empty interior; it
would create what appears to be a new region. Also the
Osher- Scthian formulation uses a continuous velocity and
Fig. 1 requires a discontinuous velocity function since cach
interface moves at a dilferent rate.

There has been little work done on the motion of multiple
junctions. Only Taylor [17] and Bronsard and Reitich [2]
address this problem. Bronsard and Reitich propose a
system of reaction-diffusion equations to model the motion
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of triple junctions. They show that interfaces in the solution
to their reaction—diffusion system move with a velocity
proportional to the curvature of the interface. Taylor's work
is based on a direct application of Huygens® principle and
applies only to constant velocities. Thus, neither method
allows arbitrary,. physically consistent velocitics to be
prescribed.

In Section 2 we exploit the link between diffusion and cur-
vature to derive a method for curvature-dependent motion
of multiple junctions. These ideas molivate Section 3, in
which we cxtend the Osher-Scthian algorithm to handle
Fig. I, and, in general, multiple junctions with specified,
physically consistent velocities.

Our new method has several advantages over those of
[17,2]. First, it is casy to program. Taylor’s approach
involves the manipulation of geometric objects. As the
dimension of the problem increases, these objects are
increasingly difficuit to manipulate. The interfaces in Fig. 1
would be considered the union of small line segments. In’
three dimensions small planar segments arc used. The
original Osher-8Sethian algorithm extends immediately to n
dimensions, and so does the new one introduced here. The
line segments or planar scgments must also inleract with
each other. At various points a decision must be made to
delete or insert segments. Visualization of the possible inter-
actions to determine the conditions under which segments
are delcted/inserted is difficult {if not impossible) in higher
dimensions. No such decisions are required with our new
method. Tt retains a key feature ol the level set approach; we
simply usc a contour plotter to find the front. All interac-
tions arc handied by the underlying PDE.

The reaction-dilfusion system possesses a small positive
parameter ¢ This parameter causes difficultics in the
numerical solution of the sysiem when & <€ Ax, where Ax is
the spacing on the grid. The difficulties are inherent in the
system, not the numerical method. This is important
because such systems are employed in modeling dendritic
crystal growth [11], and the development of the dendrites
is linked to the size of &. The only remedy to the numerical
problems, which we will see in Section 4, is to take Ax/e < |
which is impractical numerically.
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FIG. 1. Triple junction, with prescribed velocities.

2. DIFFUSION GENERATED CURVATURE
DEPENDENT MOTION
It is well known that a link exists between curvature and
diffusion [13, 19]. We first show how a splitting method
applied to a reaction-diffusion equation leads to an algo-
rithm for propagating interfaces with curvature dependent
speed. Then we apply the method to multiple junctions,

2.1. Splitting a Reaction—Ditfusion Equation
Consider a splitting method applied to

1
u =t du—-ffu)

(1)
wRPxRT - R,

where £ > 0 is small. For example, if we have an iterate u”,
then first solve

u,=¢eAi )
alx, 0)=u" 2)
until some time 7, and then solve
1
U, = _;fu(u)
‘ (3)

w(x,0)=i(x, T,)

until some time 7, and finally set " "' =u{x, T,). The key
question is can {and if so #ow do) we choose T;and T, to
obtain the right solution? A qualitative description of the
solution of (1) is offered in [ 16]. The solution approaches
a piecewise constant function whose values are the stable
zeros of f(u). There are sharp transitions between the
regions in which  is constant, and these interfaces move. If
f(u) is bistable and the wells are of equal depth, then the
velocity of an interface is ex, where x is the curvature of the
interface. This is the case in which we are interested.

The splitting method (2}, (3) is attractive because the
individual problems are well understood. We can always

-
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describe the qualitative behavior of both problems. We can
write down exact solutions for (2) immediately. The same
may be done for (3) under conditions on the initial data [2].

Suppose £, (1) = u{u+ 1){u — 1). The phase plane diagram
in Fig. 2 clearly describes the qualitative behavior of {3):
Values less than zero are driven towards —1 and values
greater than zero are driven to 1. There are an infinite num-
ber of pairs (T, T,) we may use in our splitting method.
However, note that for 7, large enough, we can write the
solution to (3) down immediately, based on the phase plane.
For T,=cc, we have that if initiaily w{x, 0) <0, then
u(x, 0)=-—1and if u(x, 0) >0, then u{x, c0)= +1.

So the solution to (3) can be computed rapidly if we take
T, = oo. This seems excessive but note that if we do so, then
on the next iteration of the splitting method (2), {3) the diffu-
sion equation will be applied to piecewise constant initial
data. Let us consider the effect of this. For simplicity, we
examine the special case where the initial data is the charac-
teristic function y of a connected domain D with a smooth
boundary. At a point P on the boundary (Fig. 3), the local
geometry of the boundary is completely determined by the
circle of curvature there. y has a local cylindrical symmetry
about the center of the circle of curvature at P, Express the dif-
fusion equation in cylindrical coordinates with origin at Cin
Fig. 3. Near P, y depends only the radial coordinate so we find

Ox
(% 7%)
This equation has the form of an advection—diffusion equa-
tion in the radial direction, with advective velocity 1/R. The
initial data for this equation Is a step function as depicted in
Fig. 4. The advective term will simply propagate the initial
data, preserving its shape. The diffusive term, for this initial

data, produces the solution (assuming that the position of
the step is given by x =0)
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Observe the effect of both terms on the level set y =0.5. The
velocity of the propagation is 1/R, that is, the curvature of
x at P. The diffusive term does not affect this level set, as the
initial position of the level set {x=0.5} corresponds to
x =0. Thus, for a short time the level set { y = 0.5} will move
with velocity equal to the curvature.

Note that this argument applies to piecewise constant
functions after a scaling and/or translation. This means there
is no need to consider specific bistable f,{u); it is the relative
depths of the wells of f{u) that determines the velocity [ 16],

>l
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0.0

— s

1.0

FIG. 2. Phase plane for (3} with f () =u’ —u.
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FIG. 3. Circle of curvature at P.

not the values attained within the wells. Therefore it is sim-
plest to discard f,{u) completely and apply diffusion to
characteristic function instead, However, we must still solve
the equivalent of {3); that is, how do we proceed after the
characteristic function has diffused for a short time? Since
the level set {3 =0.5} represents the boundary, the simplest
course is to create a new characteristic function whose
boundary is the set {y =0.5}. We can collect these observa-
tions together into a numerical method.

Suppose we want to propagate the boundary of a region
D with curvature—dependent speed. The diffusion generated
curvature dependent motion algorithm is:

ALcorITHM DGCDM.
(1) TInitalize: y =y,
(2)

(3) “Sharpen” the diffused function (e.g., if y < 3 then set
¥ =0 else set y = 1) and then begin again.

Apply diffusion to y for some time T,

The location of the interface is given by the level set {x = 3}.

An important consideration is the size of Ty,,,. The
neglected angular term in (4) will pollute the approximation
at nearby points after some time. We can make a rough
estimate of the time in which the velocity is a good
approximation to curvature. Certainly, we must let the dif-
fusion proceed for a long enough time that the level set
¥ =0.5 moves at least one grid point (otherwise, the chop-
ping step would keep the front stationary), so we require
KT hop » Ax. The neglected angular term will become
important once the diffusive information has traveled a dis-
tance on the order of the local radius of curvature, so we
need T). < R (recall k = 1/R). Combining these gives

x=1

¥=05

x=0

FIG. 4. Side view of Fig 3 near P.
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R Tch0p< R\?
= Y S
Ax - Ax? Ax

<

and, so as long as the grid resolves the smallest radius of
curvature on the grid, there are acceptable 7. Note that
during a computation, T, may be varied in response to
changes in the character of the solution.

This method gives qualitatively correct results. The quan-
titative results are also good. We can compute the exact
velocity in the case of a circle, because the curvature at any
point on a circle of radius r is 1/r. Starting with a circle of
radius 0.15, the computed velocity is within 5% of the true
velocity while the grid resolves the radius of the circle {a cir-
cle shrinks under this motion, and the grid is not adaptive,
so we must eventually fail to resolve the curvature). In addi-
tion, it has been shown [1, 7, 14] that the above algorithm
converges to mean curvature motion in a certain sense.
Briefly, Evans defines an operator #(7) as follows: given a
compact set C, e R", solve

t,= Au
u(x, 0y =y,

At time >0 define C,={x:u(x, )= 3}. Then we write
C,=#(1) Cy. The set {#(1)},., Is described as “heat dif-
fusion flow.” Then the “mean curvature flow semigroup” is
defined. Through nonlinear semigroup theory, it is proven
that

lim #(t/m)" g=.4(t)g for t>0.

nr— oo

g e C(R"),

Thus, as the heat equation is iterated over smaller and
smaller times, we obtain motion by mean curvature.

2.2. Multiple Junctions

As stated, the method does not apply to curves with mul-
tiple junctions, but it can be extended in a straightforward
way. Any extension we make should reduce to the original
algorithm when there is only one region. First, observe that
for one region R it does not matter if we use yp,or 1 —yz to
compute the motion since curvature is invariant under a
change of sign. So we could use two characteristic functions,
#& and ¥ g to compute the motion of R. We would apply
the algorithm to each y independently and at the chopping
step we find the sets {y > 1} and {y > 3}. Note that these
two sets are equivalent to the sets y g > ¥ g and y g > yp, and
this guides us when there are more than two regions to an
extension of the DGCDM algorithm:

{1) Given a partition of R™ into regions R, i=1, .., h,

(2) For i=1, .., n construct y,, the characteristic func-
tion of R,

(3) For i=1,..n diffuse each x, independently for

some time T,
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(4) Fori=1,..nset y;={x:y(x)zygx) j=1, .., n}
(5) Goto3l.

The interfaces are given by U, _, __, {x;= 3} This new algo-
rithm reduces to the original when there are only two regions.

The choice of the update after each , is diffused affects the
stable triple junctions that develop, For the above update
step, the stable triple junctions are symmetric: ones whose
angles are all 120°. Initially, and after each update step, the
x:form a partition of R™ and so we see that at these times the
vector (z (x), ¥2(x), .., 2.{x)} is one of the usual basis vee-
tors for R”; e.g., for n=13 it is one of (0,0, 1), {0, 1,0), or
(1,0, 0). The diffusion process is linear and, since initiaily
3> y;(x)=1, this is true for all times. Therefore, at each time
step, every point on the grid is associated with a point on the
surface 3.7, x,= 1. This is best visualized in R’; see Fig. 5.

For n = 3 each point on the grid is associated with a vertex
of the plane x + ¥4+ z =1 in the first octant. As each y; dif-
fuses, the points move out into the interior of the piane. Tak-
ing as the update step the maximum y;, we divide the plane
into three regions as shown in Fig. 5. By choosing a different
configuration on the plane, we can seiect a different shape, as
in Fig. 6, which leaves a 90° angle fixed. Calculations with
both configurations foliow in figures on the next few pages,

2.3. Summary

The idea underlying the DGCDM algorithm, that diffu-
sion generates curvature, has been known for some time
[13, 197, and it seems to have been considered not for com-
puting curvature-dependent motion but rather for image
enhancement. Found lacking in this respect, it has not been
pursued further. The DGCDM algorithm is known in image
processing technology as an iterated median filter. In [5], it
is noted that “computer vision researchers know quite well
that a median filter, iterated on a grid, remains stcady after
some iterations.” It would seem that the derivation of the
appropriate time to run the filter has not been carried out.
This “well-known” behavior is cansed by iterating the filter
too rapidly, ie., taking T, too small, which prevents
motion.

The DGCDM algorithm is not limited to curvature-
dependent motion. By using a variable coefficient diffusion
equation, we can obtain anisotropic velocities. It is also
possible to obtain constant velocities by following different
level sets as the algorithm progresses [ 14]. Specifically, if we
track the level set 1 — v(¢/dne)"” then the speed of the front
will be ¢ + ex. However, note that by doing this we lose sym-
metry in that we may no longer compute with either y or
1 — . If we wish to compute with 1 — y then we must follow
the level set £ + v(z/4me)'/; otherwise the level set will move
in the opposite direction (refer to Fig. 4). This requirement
prevents the application of this method to multiple junc-
tions when the velocities are constant, as will be made clear
in the next section.

381/112/2-9
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x+tytz=1

FIG. 5. Stable shape “Y" for update step in which maximum is taken.

For configurations on x + y + z = 1 in which the meeting
point of the regions is near the centroid point, triple points
in the corresponding computation approach the same shape
as the meeting point. But as the meeting point moves
towards the edges of the plane this is no longer true. The
precise connection between the configuration on the plane
and the stable angles in the computation has not been
established (see Figs. 7-16).

xtyt+te=1

FIG. 6. Alternative update method has T~ shaped stable configuration.
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Iter. # 0 dX= £.25E-02 dT= (.50E-04

Iter. § 380 dX= 0.25E-02 dT= 0.50E-04

Iter. § 780 dX= 0.25E-02 dT= (.50E-04

Iter. # 1180 dX= 0.25E-02 dT= 0.50E-04

[ter. # 1580 dX= 0.25E-02 dT= 0.50E-C4

Iter. # 1980 dX= 0.25E-02 dT= 0.50E-04

CONSTANT FIELD - VALUZ IS O

FIG. 7. Motion of triple junction under curvature.
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Iter. § 0 dX= 0.17E-02 4T= 0.25E-D5 Iter. § 4000 dX= 0.17E-02 dT= 0.25E-05
— —

Iter. § 8000 dX= B.17E-02 dT= 0.25E-05 Iter. #12000 dX= 0.17E-02 &T= 0.25E~05

Iter. #16000 dX= 0.17E~-02 <T= 0.25E-05 [ler. #20000 dX= 0.17E-02 dT= 0.25E-05

FIG. 8. Motion of triple junction under curvature,
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lter. 24000 dX= 0.17E-02 dT= 0.23E~05

Iter. §28000 dX= D.17E-02 dT= (0.25E-05

—

Iter, #32000 dX= 0.17E-~02 dT= 0.25E-05

[ter, $36000 dX= 0.17E-02 dT= 0.25E-05

Iter. #400C0 dX= 0 17E-02 «T= 0.25E~-05

Iter. #44000 dX= 0.17E-02 dT= 0.25E-D5

FIG. 9. Motion of triple junctiens under curvature (cont.).
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Iter. #48000 dX= 0.17E-02 dT= 0.25E-05

CONSTANT - WALUE IS O

J

iter. #88000 dX= 0.17E-02 dT= 0.25E-05

CONSTANT ML - YALUR IS O

lter. g "*** dX= G,17E-02 dT= 0.25E-05

CONSTANT FIELY - VALUE IS &

Iter. f***** dX= 0.17E-02 4T= 0.25E-05

[ter. g*=*=» dX= G.17E-02 dT= 0.25E-0U5

CONSTANT FIEQH - YALUE IS 0

Iter. g*»+*+ dX= 0,17E-02 dT7= 0.25E-05

CONSTANT FIELH - ¥YALUZ IS O

CONSTANT FELD - VALUE IS O

FIG. 10. Motion of triple junctions under curvature (cont.).
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Iter, # 0 dX= 0.25E-02 dT= 0.50E-04 iter. # 20 aX= 0.25E-02 dT= 0.50E~-04

o

Iter. ¢ 40 dX= 0.25E-02 dT= 0.50E-04 Iter. # 120 dX= 0.25E-02 dT= 0.50E-D4

o

lter. # 380 dX= 0.25E-02 dT= 0.50E-04 lter. § 600 dX= 0.25E-02 dT= 0.50E-04

g

//\\H‘

FIG. 11. Motion of several regions under curvature.
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Iter, § 820 4X= 0.25E-02 dT= 0.50E-D4

Iter. § 1640 dX= 0.25E-C2 dT= 0.50E-04

}

Iter. § 1260 dX= 0.25E~02 dT= D.50E-C4

Iter. § 1480 dX= ¢.25E-02 dT= 0.50E-04

—

I

-

ler. § 1700 dX= D.2OE-DZ dT= D.5DE-D4

Jter. § 1920 dX= D.25E-02 dT= 0.50E-04

\
)

FIG. 12. Motion of several regions under curvature (cont.).
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ler, # 0 dX= 0.25E-02 dT= 0.5CE-06 Iter. # 280 dX= 0.25E-02 4T= 0.23E-05

©

Her. § 100 dX= 0.25E-02 dT= (.50E-D4 Iler. § 300 dX= 0.23E-02 dT= 0.50E-04

v

Hter. § 500 dX= 0.25E~02 dT= 0.50E-04 lter. 4 900 dX= 0.25E-02 dT= 0.50E-04

—

FIG. 13. Motion of spiral with “T ™ stable shape.
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lter, # 0 d¥X= 0.25E-02 dT= 0Q.5CE-06 Her. § 380 d¥X= 0.26E-02 dT= 0.25E~05

]

Iter. # 500 dX= 0.25E-02 d7= 0.50E-(4 Iter. # 1000 dX= 0.25E-02 dT= 0.5GE-04

Wer. # 1500 4X= 0.25E-02 dT= 0.50E-C4 fter, § 2000 dX= Q.2%E-02 dT= 0.50E-04

CONSTANT FIELD - ¥ALUX I3 D

FIG. 14. Motion of spiral with “Y™ stable shape.
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lter. & 0 dX= 0.20E-02 4T= 0.50E-06

Iter. § 2B0 dX= 0.20E-02 dT= 0.25E-05

lter, § 680 dX= 0.20E-02 dT= 0.23E-05

Iter. # 320 dX= 0.20E-02 dT7= 0.25E-04

Iter. § 720 dX= 0.20E-02 dT= 0.23E-04

Iter. § 1120 dX= 0.20E-02 dT= 0.25E-04

FIG. 15. Motion of double spiral with “Y™ stable shape.
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Wer. # 1520 d¥= 0.20E-02 ¢T= 0.25£-04 [ter. § 1920 dX= Q.20E-~02 d7= Q.25E-04

—

|
iter. § 2320 dX= G.20E-02 d7= 0.25E-04 Iter. § 2720 dX= 0.20E-02 dT= D.25E-04
[ter. § 3120 dX= 0.20E-C2 dT= 0.25E-04 lter. § 3520 dX= 0.20E-02 4T7= 0.25E-04

T

o

|

FIG. 16. Motion of double spiral with “Y™ stable shape.
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3. A COUPLED OSHER-SETHIAN METHOD

3.1. Original Osher—Sethian

The criginal Osher—Sethian algorithm [15] is as {ollows:

given an initial hypersurface I,, choose a continuous
¥ R"— R such that

Fy={xeR":y(x)=0};
then solve

¢.=F|Vg|
$lx, 0) =y

and define
rny={x:¢(x, )=0}.

The normal velocity of I'(¢) is given by F. It has been proven
[4, 8] that if F =« then the above definition of I(r) agrees
with the classical notion of motion by mean curvature, as
long as it exists. It has also been shown that any continuous
¥ may be used; a typical choice is distance to [:

dist(x, ')
—dist(x, /)

W(x)= { ?f X :insid'e” F o
if  x “outside” I,
We use this initiahization for all our computations.

This approach is very appealing because of the ease with
which it handles difficult numerical situations—topological
merging, breaking, etc. No special action need be taken in
the event of such topological changes; a contour plotter
finds /(1) as it evolves. It does, however, require that there
be no more than two distinct regions involved. That is, there
must be an “inside” and an “outside” which the interface
separates. If this is not true, then we cannot choose an
appropriate i as above, As an example, consider the initial
data in Fig. 17. Suppose we choose ¢ to be distance, having
the sign indicated in the figure. The Osher—Sethian algo-
rithm produces a f(¢) as on the right. We see that I'{r)
develops an interior, which we do not want. So as described
Osher—Sethian does not apply to triple junctions.

w0 w<0

y<0 w0

FIG. 17. Development of an interior.
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3.2. Coupling

It seems reasonable that we could assign each region a
separate function ¢, and then evolve with Osher-Sethian.
There are two approaches we might take initially. First, we
could write down a system of coupled Hamilton-Jacobi
equations for the ¢,. Second, we could evolve each ¢, inde-
pendently according to the original Osher-Sethian idea, and
then periodically interact the values of the ¢, in some way,
as was done for the DGCDM algorithm. The first approach
was not successful.

The second method requires us to decide how the 4,
should interact. At the very least, any interaction we choose
must not move the initial configuration in Fig. 18 when the
velocity is proportional to the curvature. We use this fact as
a guide in deciding upon an interaction step for the ¢,.

If we apply Osher—Sethian to each individual ¢; in the pic-
ture on the left in Fig. 18, then after a time the boundaries
will look like the picture on the right in the same figure.
Near the edges where the individual boundaries nearly
touch, we have that some pair of ¢, are nearly equal, while
the remaining ¢ is much smaller. For example, near point A,
we have ¢, ~ ¢,, and we are far from the boundary of ¢, so
@5 is much smaller thaa either ¢, or ¢,. The same is true at
points B and C, where ¢,~ ¢;, and ¢, = ¢,, respectively.
The dotted line represents the original pesitions of the zero-
level sets, and we would like these to be the zero level sets
after the interaction is complete. Along the dotted line, we
have ¢, =¢, near A, ¢, =¢; near C, and ¢,= ¢, near B
because each ¢, represents distance from the zero-level set.
Therefore a correct interaction in this case would be

$;=¢;—max ¢,. (6)
I#EJ

This forces each ¢, to have the zero-level set that it started
with, which holds the triple point in placz. So the numerical
method is

ALGORITHM A.

(1) For each of n regions, initialize ¢;, i=1, .., n, with
distance to the boundary of the ith region.

(2) Solve (5) with ¢,, i=1, .., n, as initial data up to
time 7*.

FIG. 18, Deriving the interaction step.
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Iter. # 0 dX= 0.50E-02 4T= 0.25E-06

349

ILer. § 4600 dX= 0.50E-02 dT= 0.25E--08

|

FIG. 19,

{3y Fori=1, ., n compuie
¢ =¢,—max g,
iFE

(4) FOf i= 1, bery n& set ¢i = ¢:_'|ew_
(5) Return to step 2.

We retain the generality of the original Osher-Sethian
method in that we may easily specify the velocity of the level
sets. The previous methods can theoretically be modified to
provide different velocities, but the procedure is not direct,
as the Osher—Sethian method is. Also, no errors are made in
specifying T*. That is, the DGCDM algorithm relies on an
approximation whose accuracy is controlled by the choice
of Topop, Whereas (3) actually moves level sets with normal
velocity F.

3.3. Degenerate Level Sets

Algorithm A has a side effect. It is clearly seen by con-
sidering an example. Look at Fig. 19 in which the initial
configuration is shown on the left. After 23 steps of Algo-
rithm A, the picture on the right results. There appears to be
some kind of instability in the algorithm. The problem is
that, although {6) correctly locates the zero-level sets of the
¢,, it also changes the character of each ¢, near the zero-
level set.

Consider ¢, in Fig. 20. Since ¢, represents the exterior of
the shape, ¢, is a cone. We have ¢, < 0 within the circle and
@4 > 0 outside the circle. When we apply (6) to ¢,, we sub-
tract larger values from ¢, at points 4, B, C than at points
D, E, F.In fact, at I, E, F we have max, ., ., ¢,=0 while
at A, B, C we have max, ¢, ¢, >0, since each point is
within a region where some ¢, > 0. The unintended effect of
(6) is to create new local extrema in ¢,.

Applying Algorithm A.

The cumulative effect of Algorithm A is 1o create a level
set in ¢, that is shaped like the original figure. This level set
is very close to the zero level set of ¢,. Thus, ¢, eventually
acquires a level set similar to that in Fig. 17 and Osher-
Sethian uo longer applies.

We can avoid this problem by observing that we do not
have to set ¢; = ¢7°" in the algorithm. Instead, all we need
to do is set ¢; equal to a continuous function whose
zero-level set coincides with that of ¢7°*. The simplest such
function is again distance. That is, we replace ¢, =¢™" in
Algorithm A by

(1) Fori=1,.,n
» Generate a discrete representation of the zero level
set of ¢,

» for each point on the grid, compute the distance to
the zero-level set using the above representation.

» set ¢, equal to the computed distance.

With this new algorithm, the initial data in Fig 19
evolves as in Fig. 21 (see also Fig. 22).

FIG. 20. Figure 19, with ¢, marked.
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Iter. # 0 d¥= P}.98E-02 dT= Q.25E-06

Iter. § 2500 dX= $.BBE-02 4T= 0.25E-Q6

—

L

Iter. # 5100 dX= 0.98E-0Q2 dT= 0.25E-06

lter. § 7700 dX= 0.98E-02 dT= 0.25E-06

L

Iter. #10300 ax= $.98E-0D2 dT= 0.25E-06

Iter. #12900 dX= 0.9BE-02 dT= 0.25E-0§

0

FIG. 21.

Evolution under new algorithm.
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Iter. § 0 dxX= 0.88E-02 dT= 0.25E-06

1

Iter. # 1400 dX= 0.98E-02 dT= G.25E-06

fter. § 2000 dX= 0.98E-02 ¢T= 0.25E-06

L

Iter. § 5900 dX= 0.98E-02 dT= 0.25E-Q5

Iter. § BR00 dX= 0.98E-02 dT= 0.25E--06

L

Iter. #11900 dX= 0.98E-02 dT= 0.25E-06

FIG. 22. Evolation under new algorithm.
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3.4. Constant Velocities

The choice of curvature as velocity is a special one
because the curvature of ¢ is equal to the curvature of —¢.
Therefore it does not matter which sign of ¢ we choose to
denote the “inner” region. So in the case of a circle shrinking
under its curvature, we may use either ¢ <0 or ¢ > 0 inside
the circle and the computed motion is the same.

This is not true for general velocities. If we substitute —¢
into {5}, then we must have F{—¢}= — F{¢} for (5} to be
invariant under the substitution. In particular, if the velocity
is a positive constant, then a circle will expand if ¢ >0
within the circle and shrink if ¢ < 0 there. So, for example,
il we want to use the method of the previous section to
propagate a line at a constant velocity ¢ we need ¢, and ¢,
one for each side of the line, and we must use F, = ¢ for ¢,
and F, = —c¢ for ¢, when solving (5). Otherwise, the zero-
level sets will move in opposite directions; the update step
will not produce the correct position of the line,

Now suppose we want to assign constant velocities to
each of the arms of a triple junction (see Fig. 23). Since the
velocities are usually unequal we immediately see that we
must use a discontinuous F; for each ¢,. In addition there is
the question of how to implement the transition from one
velocity to the next at the triple junction,

A discontinuous F in (3} produces a discontinuous ¢, The
original Osher-Sethian algorithm expects a continuous
velocity. But we can still apply Algorithm B because of the
reconstructive step introduced in the previous section. Any
discontinuities introduced in ¢ wiil be eliminated when we
reinitialize it. We need merely choose an implementation for
a discontinuous F; e.g., for Fig. 23 we can solve (5) with

Fzz{c‘i il ¢, <¢,
Cz

if ¢;<4¢,
as the velocity function for ¢,. The dotted line represents the
position at which ¢, = ¢,; this is the line along which F, is
discontinuous.
In general, the velocity for ¢, depends on the relative sizes
of the remaining ¢

F=r; if ¢, greater than all other ¢.

FIG. 23. ¢, requires a discontinuous velocity function.
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FIG. 24. Applying Huygens' principle.

The motion of triple junctions under constant velocities
has been studied by Taylor [17]. She develops a method
which is an expression of Huygens' principle. Consider
Fig. 24. For the initial configuration on the left, Taylor
proceeds by constructing a representation of the position of
the front at time ¢. Each respresentation is constructed inde-
pendently of the others by first translating the ith arm by a
distance vt and then extending the transiation into a circle
of radius v,7, as shown in the figure. Then for each pair of
regions a point that represents the meeting of the regions
after time r has elapsed is found, If the velocities are consis-
tent there will be a common point after each pair of regions

TABLE [
Assigned Velocities for Figs. 25-27

™/
I
Fig. 25 i \
"~/
1/2
Fig. 26 1
l\/
1
Fig. 27 1 /\
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Her. # 0 dX= 0.98E-02 d7= 0.10E-D3 lter, # 600 ¢X= D.B8E-DZ2 dT= D.10E-0D

Iter. # 1200 dX= 0.9BE-02 <T= 0.10E-03 lter. # 1600 dX= 0.98E-0Q2 dT= 0.10E-03
r

Tver. # 2400 dX= 0.98E-C2 aT= 0.10E-C3 Her. § 2800 dX= 0.9BE-C2 aT= 0.10E-03
—

FIG. 25. Evolution under new algorithm.

581/112/2-10
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Iter. § 0 dX= 0.98E-02 dT= 0.10E-03

Ter. § 600 dX= 0.98E-02 4T= §.10E-03

Iter. § 1200 dX= 0.98E~-02 dT= 0.10E-QJ

Iter. § 1800 dX= 0.9BE-02 dT= 0.10E~03

Iter. § 2400 dX= 0 BBE-CZ dT= D.10E-G3

Iter. § 2800 dX= 0.96E-02 dT= D.1QE~03

FIG. 26. Evolution under new algorithm.
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Iter. # 0 dX= 0.98E-02 dT= 0.10E-D3 iter. § 600 dX= 0.98E-02 dT= 0.10E-03
Iter. # 1200 dX= 0.98E-02 dT= 0.10E-03 lter. # 1800 dX= 0.98E-02 dT= 0.10E-03
ller. § 2400 dX= D.98E-0Z dT= 0.10E-C3 Iter. § 2800 d¥= 0.98E-02 dT= 0.10E-03

FIG. 27. Evolution under new algorithm.
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iler. # 200 dX= 0.25E-02 dT= ©.10E-03

FIG. 28. Development of a spiral.

is examined. The construction of these points follows the
idea that the maximal intrusion wins. That is, of the possible
candidates for the meeting point, the one that represents the
greatest penetration of the faster phase is the point chosen.
But this is precisely what (6), the update step, expresses.
Our computations agree with the hand drawn results of
Taylor’s algorithm [17]. Figure 25 shows a computation
corresponding to Fig, 24; iteration 600 is in close agreement
with Fig. 24. Other computations follow on succeeding
pages. The prescribed velocities for the computations are
given in Table I (sec also Figs. 26 and 27).

Taylor also claims that certain velocities do not produce
a well-posed problem. One such situation is when all
velocities are equal and (counter)clockwise. We may still
attempt a computation in this case, and we find that a spiral
develops (Fig. 28). The computation may not proceed
farther for the spiral will tighten beyond the resolution of
the grid. The resulting figure is interesting and further study
is nceded to understand how perturbations of the velocities
would affect the formation of the spiral.

4, SYSTEMS OF REACTION-DIFFUSION EQUATIONS

Recently attention has been given to fast reaction, slow
diffusion equations as a means of moving fronts or as part
of a system describing dynamical behavior (e.g., crystal
growth, see [11]). An example of this type of equation in
one dimension is

1

uy=o du——f,(u), ()

where £ >0 is a small parameter.
In Section 4.1, we examine a system of reaction—diffusion
equations proposed to model triple junctions. Some com-
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putational difficulties are noted, and then in Section 4.3 we

study Eq. (7) with various initial data to gain insight into

the numerical problems with a system of such equations.
4.1. A Proposed Model

Bronsard and Reitich [2] propose the following model
for the study of triple junctions:

1
u,=sAu~f;V,,W(u)

on QcR”
u: QxR+ —R"

(8)

Boundary conditions are of Dirichlet or homogeneous
Neumann type. Here, W: R”+ R is a non-negative func-
tion which has three minima a, b, ¢, at which W=0. An
example is W(u)=|u—a|’ju—b|?|u-—-c|? W is a “triple
well potential”; it has three wells, one for each phase. A con-
tour plot of the example W above with selected wells is
shown in Fig. 29. Sample initial data [or w(x, ¢) in the case
of Fig. 1 is shown in Fig. 30

Bronsard and Reitich suggest via formal asymptotics that
u(x, 1) separates £ into three regions in which uxa, b, ¢,
that there is a sharp transition layer between each region,
and that each transition layer moves with normal velocity
ek. They also derive an expression which determines the
angles at which the interfaces meet at the triple junction:

sin(f,) _sin(#,) sin(f;)
@ha - (Dbr - o '

(9)

Here, @™ represents the energy required to make the transi-
tion from phase x to phase y. Each @ is the solution of a
minimization problem invelving an integral of W(y); the

FIG. 29. Contours of #(u); triple well potential.
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First compenen of u(x,0)

Second component of u(x,0)

FIG. 30.

Initial data for Eq. (8), Fig. 1.

minimization is over all C' paths in R™ connecting two
minima of W. The key observation for our purposes here is
that if W{u) is symmetric then all & are equal and hence
we must have 8, =0,=0,=120°.

Thus, if we choose

o))
b= (cos (%} s (111_;))
e=(os ()5 (22)

with the example W given earlier, then all angles are equal
to 120°.

Equation (8) consists of competing processes: the dif-
fusive term will widen the transition regions, while the reac-
tive term will narrow them. The interfaces will move when
points are able to make the transition from one minimum to
another.

)

4.2. Computations

The grid chosen was Q=[—0.1,01]x[—0.1,0.1]; the
discretization is uniform in both directions. A smaller £2 was
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chosen to achieve smailer stepsizes and also to focus atten-
tion on the motion of the junction. The velocities here are
small; a focused grid shortens the time required to make a
computation, We use a basic five-point discretization of the
laplacian and the explicit Euler method in time. No special
discretization is needed for W,

Boundary conditions will affect the motion of the triple
point. If we use homogeneous Neumann conditions, then
curvature will be introduced at the boundary since the
initial interfaces typically do not satisfy the boundary condi-
tions. If we use Dirichlet conditions and the velocities are
constants, then the interfaces will be unable to move along
the boundary. In most of our experiments we will use
homogeneous Neumann conditions. This allows the inter-
faces to move along the boundary when the veiocities are
constants. Also, there is still a time interval in which the
motion of the triple point is not corrupted by the boundary-
generated curvature.

QOur first experiment verifies a steady state solution from
earlier sections. Dirichlet boundary conditions are used. For
initial data, we used Fig. 30; the initial angles at the triple
point are 120°. Since the curvature along each arm is zero
and the triple junction initially satisfies Eq. (9), we do not
expect any motion. This is indeed the case for the coarsest
grid and largest €: (555, 135) as well as the finest grid and
smallest ¢ (1dz. %)

The next experiment starts with angles that are out of
equilibrium, Here we use Ax = r65. The angles each initial
interface makes with the x-axis are 180°, 30°, and 315°.
Intuition suggests that the initial direction of the triple junc-
tion’s motion should be in the direction of the vector sum of
the interfaces’ initial meeting. This is also the case as the
triple point moves down and to the right. It continues down
and eventually moves off the grid.

Now we set £ = 0.0005 and repeat the above computation.
In this case, we expect that the motion should be slower, but
we actually observe that the motion terminates. Calcula-
tions are carried out in double precision, and a non-con-
stant steady state solution of Eq. (8) is obtained in which all
three interfaces clearly possess non-zero curvature, in viola-
tion of the theory.

4.3. A Study of One Reaction—Diffusion Equation

In an attempt to better understand the behavior of the
numerical solution of (8), we study a simpler problem first,
In this section, we examine in detail a single equation, (7),
with f, = u* — . For certain initial data, an exact sclution
may be found to which we may compare our computations.

4.3.1. Numerical Experiments

For numerical experiments, we have f,(u)=
(4 1 )u)(2— 1). The computational gridis 2 =[—1, ] x
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FIG. 31. Types of initial data.

[ —3. 1] We use a larger Q here because we can compute an
exact solution below in which the interface will move
quickly and we want to study its motion over a longer time
than would be possible with the £ of Section4.2. We
worked with three different types of initial data—a single
circle, two disjoint circles, and two overlapping circles (see
Fig. 31).

The initial data assumes the values in the regions
indicated. We began by employing a straightforward dis-
cretization of (7):

Il EAI X X ¥ » n At
uy--i—F[AJr A7+A-+ A;]uijf?

n+1 __

Uy

Juug). (10)

From [3], we know that the velocity is, up to 0(¢?), x,
where x is the curvature of the interface. The qualitative
behavior of regions like the initial data in Fig. 31 under this
flow is well understood [10]. The regions in which ux 1
should shrink and eventually vanish, leaving w= —1
throughout £2.

Our emphasis is on the case of a single circle, for if we let
r(t) denote the radius of the circle at time ¢, and let ry = r(0)
denote the initial radius, then dr/dr= —er~', and so r(t) =
ri— 261", Thus we can compare both the computed
velocity and position of the interface with the exact values.
The position of the interface is determined by linear inter-
polation and the velocity is approximated by a central
difference of the interface position.

We chose &£=001, 4:=000005, dx=1, ;5. 75 and
computed the solution until it was constant. We found that
for Ax = 45 the solution never became constant; instead it
reached a non-constant steady state, which simply should
not happen. This occurred for each of the initial configura-
tions shown in Fig. 31.

Three questions come to mind: first, does this behavior
(particularly the frozen profile) persist for smaller &7
Second, does this behavior persist for more complicated
géometries (e.g., Fig. 32)? Third, does this behavior persist
for other finite difference methods? The answer to these
questions is yes.

A variety of alternative methods were employed to solve
{7). Table II lists the approaches used in the space and time
variables. The terms “5 pt” and “9 pt” refer to the number of
points used to discretize the Laplacian. The “9 pt” stencil is
the usual fourth-order accurate approximation. The dis-
cretizations are explicit except where noted. The first entry
in the table is just {10), The NL-SOR method is an implicit,
non-linear, successive over-relaxation scheme, which is
described in detail below.

4.3.2. Implicit NL-SOR

Treating the laplacian in (7) implicitly is easily accom-
plished by a variety of methods. However, it is possible to
include the reaction term (At/e) f,(u) in the implicit for-
mulation.

This gives rise to a system of non-linear equations to solve
at each time step. The system has the form

3 " Ar L n
wtl—edrfgn+1,4%,44)]"" +?fu(u,.j“)=u,.j
(11)
Initial Data
250
200
150
100
50

50 100 150 200 250
Space Step: 1,67¢-03

FIG. 32. Initial data with complicated geometry.
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TABLE II
Methods Used to Solve (7)

Space Time Accuracy
5 pt Forward Euler 2,1}
9pt . Forward Euler (2,1}
5 pt Heun's method (2,2)
9 pt Heun’s method 4,2)
Implicit (5 pt) Forward Euler 2. 1)
Implicit (9 pt) Forward Euler 41)
Implicit NL-SOR (5 pt) Forward Euler (2, 1)
Implicit NL-SOR (9 p1) Forward Euler (4, 1)

where g(n, 4%, 4] ) is some approximation to the laplacian
at time level n. We then solve (11} via the following
(assuming that g(n, 47, 47 ) is the five-point approxima-
tion to the Laplacian):

(1) Letov®=u", set k=0.

i i
(2) Forj=1,., N
Fori=1,. ., N
Solve
e 4t At
- (r+1 (r+1) r) (r) o =
TR (o2 + v el el —4z]+ p Jdz)
=uj (12)
’ Fronl Position: Computed (dash) Exact (solid)
0.25 T T T
0.2

GO5 -

0 i 2 3 4 5 [ 7 8

dehaX/eps: 2 Time
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for z, and set

k+1) _ 13
v =(1—w) v + wez.

(13)

(3) Compute the residual of (12); call this r.

(4) I r<TOL, then take ui*' =0l " else k=k +1
and return to (2).

The solution of the non-linear equation (12} is accom-
plished via Newton’s method with an initial guess z = {);
typically, two iterations suffice. With this method, much
larger time steps may be taken; for Figs. 33 through 33, we

used 41 = 1i5.

4.3.3. Results

It turns out that the behavior of the interface is highly
dependent upon the relative values of 4x and & For dx/e
near 2.0, the interface did not move at all after a short time
in all three cases. It was not unitil Ax/e came near 0.5 that
correct motion was observed.

Figs. 33, 34, 35 show the computed interface position and
exact position for =001, 4r=0.01, 4x =%, 14, 75 and
the NL-SOR method. Figs. 33, 34, 35 show the corre-
sponding computed and exact velocity.

Front Position: Computed (dash) Exacl (selid)
©.25 T T

0 0.5 1 1.5 2 2.5 3 35 a4 4.5

deltaX/eps: 1

Speed comparisen: eps: 0.005

Speed comparisen; eps: 0.0025
0.25 x x

0.25 -

3 1 2 3 4 5 6 7 8
dehaX/eps: 2 Time

FIG. 33. Position and velocity comparisons, I.

0 G.5 1 1.5 2 25 3 3.5 4 4.5

dellaX/eps: 1 Time

FIG. 34. Position and velocity comparisons, I1.
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Front Posilion: Computed (dash) Exact (solid)
0.25

0.5 1 1.5 2 2.5

deliaX/eps: .5 Time

Speed comparison; eps: (.01
0.25 T

021
0.15
0.05 "
9 l . > 2

delaX/eps: .5

Time

FIG. 35. Position and velocity comparisons, 111.

Note the case where Ax/e = 2.0 (Fig. 33); the interface has
stopped moving, which is qualitatively incorrect. The other
cases, Ax/e = 1.0 and 0.5, are much better. (An explanation
of the oscillatory nature of the computed velocity is given in
Section 4.4.) Most disturbing, however, is Fig, 34, Here the
front behaves qualitatively as we expect, but the velocity is
off by fairly large margin. It is a cause for concern because
we cannot tell, in a situation where we do not know the
correct qualitative behavior, if the velocity is correct. Yet the
incorrect velocities may persist beyond the point of feasible
grid refinement.

We have not included pictures for smaller £ because they
yield no new information; they are essentially the same. The
frozen profile occurs for Ax/e~ 2.0 in both of the other
initial configurations and for more complicated geometrics
{Fig. 32).

4.4. Discussion

It is convenient for the following discusston to write (7) as

1
T,=sdT——R(T}, (14)

MERRIMAN, BENCE, AND OSHER

where T(x, 1) and R(T) are interpreted as temperature and
reaction rate, respectively. Now consider a semi-discrete
approXimation to (14),

a:T‘l" £ x x 3 G I
oS LA 41+ 4% 42 VT~ R(T,). (15)

This approximation yields a simple intuition. The idea is
that (15) describes a physical system which is a grid of “fuel
elements” connected by thermal conductors (see Fig. 36).

Each “fuel element” (gridpoint) has a temperature 7.
We think of the interfaces that develop as “burning” fronts
which separate “hot” points (points near one of the stable
zeros of R{T)) from “cold” points {points near the other
stable zero of R(T)). Points within the interface are
“igniting” (making the transition from “cold” to “hot™).

Within this framework we can reformulate our basic
guestion: why do we obtain frozen profiles? A frozen profile
in the language above is a “fire” which has stopped
“burping.” That is, “fuel elements” are no longer “igniting,”
even when they are near points already “burning.” Consider
the most extreme case, where a “cold” element is completely
surrounded by “hot” neighbors. Let T, and T, denote
the stable points of R(T), so that T, > T.o4-

The “cold” center point receives heat via conduction
along the thermal conductors (gridlines). This is the con-
tribution of the term £ AT. The maximum rate at which heat
comes in is, using (15),

4

P (Thor— Teows)-

(16)
If the reaction, (1/g) R{T), can absorb heat at this rate (or
faster) then the center point will not “ignite.” Comparing
these two expressions would give a relationship between ¢
and Ax to avoid freezing in this case. However, we can make

L4

FIG. 36. Grid for intuition.
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a more general statement. Note that our intuitive approach
relies only upon the reaction R(T) and heat conductivity
along the grid. Boundary conditions, time discretization,
etc. play no role in producing the frozen profile. Consider a
general discretization of (7),

or,
ot

¢ ¥ KT, T)— R(T,),

fed €

(17

where K,; 20 and {T,}, . are values on a grid G. Make
the following

ASSUMPTION 1 {Maximum principle). If the initial and
boundary dara for (17) satisfv Toq < T,(0)< T, then

Tcoid s Tcz(l) < Thmjbr 1>0.

This is not unreasonable. For discretizations like (17) the
principle would have to be violated at the boundary first,
which reasonably discretized Neumann or Dirichlet condi-
tions will not do. Now we can show that if conduction is too
weak, [rozen profiles appear.

THEOREM 1. Assumie that the maximum principle holds
and assume that the initial data takes on only the values T,
and T.,q. Then no T, will ever cross the threshold value T,

if
maxr, , <rer (1/6) R(T)
¥ e Kp(Tg—T,)
Wminﬂ,g_ T< Thor (1/e) R(T)
& ZﬁEG K:(_B(TB_ Tm)

>1 (18)

(19)

Proof. Consider a point T, such that T,=T_,,4. Then

oT, 1
2=t 3, K(Ty—T.) == R(T,) (20)
! P ¢
1
<¢ ¥ Kp(Toor= Twu) = R(T)  (21)

BeC

by the maximum principle.
Now, if the right-hand side of this inequality is negative at
some T.F satisfying T3 < TX < T, then T (¢), which has

T,(0)=T_,4, can never exceed T.*. But this is the same as
saying that

max [E Z KJ,B(Thol_Tcold)_lR(Ta}]<0

Tew=T<Tol geg £

and this is just (18).

The other condition follows from considering a point T,
such that 7,(0) = T\, and looking for a positive right-hand
side to the inequality obtained from the maximum prin-
ciple. |

3ol

Now we can apply Theorem 1 to (10). Here K5 = 1/4x?,
and solving the conditions (18}, (19) for 4x/z we obtain

Ax
£

Ax -
T> (4( Thol - Tco]d))/lmln?'mmg T< Ty R(T)I

> (4( Thm - Tco]d ))/max Teold = TE T R( T)

For the choice of R(T) in our numerical experiments,
Thot =1, Teora = — 1, and with T, =0, the above expressions
are identical, giving

Ax
> /423 NOETE

as the condition for frozen profiles. As we noted in
Section 4.3.1, the critical ratio is 2.0 50 the above estimate is
off by a significant amount.

The explanation is that the theorem takes a worst-case
approach. It describes the ratio for which motion cannot
possibly occur, regardiess of the configuration of the initial
data. Intuitively, different initial configurations lead to dif-
ferent freezing ratios. One would suspect that it is less likely
that a single “hot” point with “cold™ points on all four sides
(Fig. 37) will freeze than the same point with “cold” points
on only two sides. The motivation is that the center point
will receive more “heat” in the former case. This is borne out
via numerical experiments.

For the initial data in Fig. 37, the computed freezing ratio
is 4.0, which is much closer to that predicted by the theorem.

As an aside, we see that the oscillation in the computed
velocities in Figs. 33-35 is expected. The interface moves in
a jerky fashion, the reaction term pulling values toward T,
and T,y and the diffusion term spreading them out. The
initially sharp front spreads, becoming less sharp, and then
the reaction term “snaps” points back to the stable values.
So motion of the front will occur only if encugh heat is con-
ducted so that a point can get close enough to the other
stable state so that the reaction term pulls it in.

(22)

FI1G. 37. Extreme case for freezing.
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4.5. Summary of Reaction-Diffusion Approach

Using a reaction—diffusion equation is an attractive idea
in that curvature-dependent motion can be calculated
without the need for computing a numerical approximation
to the curvature itself. In two dimensions, the curvature of
#(x, y) can be expressed as

¢.rx ¢? - 2¢.ry¢'x ¢_\‘ + ¢v»¢’2r

TR =
and in three dimensions the Gaussian curvature is
1 o Z ,:; Z o0
A VI

with the expression for mean curvature no more tractable.
The denominators above can be difficult to deal with
numerically. There is also the issue of which discretizations
to use for the needed derivatives. Avoiding the approxima-
tions of {23}, (24) is desirable, aside from computation time
saved.

However, there is an inherent problem in the numerical
solution of these reaction—diffusion equations: the grid
must resolve the width of the transition region. More
unsettling is the example of Section 4.2, which showed that
a significant error is made even if Ax/e=1. For our
problem, Ax/e<<1 is required, and the computational
expense therein implies that we must employ other methods.

Tt should be noted that detailed studies of spurious solu-
tions to nonlinear differential equations were conducied in
[&, 18]. The emphasis in [ 18] is on computing steady state
solutions to ODEs and PDEs containing nonlinear source
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terms via iteration in time. They show that a spatial dis-
cretization can produce spurious steady state solutions even
when the original equation has only one steady solution,
even when used with linear multistep methods in time. They
also note the misconception that simply taking a smaller
time step will alleviate the probiems. Our equation does
possess a steady state solution for particular mitial data, but
none of the examples we have computed fall into that class.
Therefore, our results are different although cleariy related.
The work in [67] considers a more general problem and
shows that insufficient spatial resolution can yield smooth
spurious steady solutions.

5. SUMMARY

This work began because of the amazing pictures of
[11, 127; see Fig. 39. The system solved there possesses an
equation like (7), and our experiments suggest that a basic
finite difference method on a regular grid (as was used in
[11, 12]) provides an inadequate sotution uniess one takes
dx < ¢, which 1s impractical numerically. More problematic
1s that the system of equations is intended to model den-
dritic crystal growth, and the size of ¢ affects the develop-
ment of the dendrites. To correctly capture the dendrite
growth for small ¢ with a fast reaction, slow diffusion equa-
tion is numetically infeasible. The analysis of Section4.4
shows that this is unavoidable and purely a result of the
numerical method used. These results suggest that coupling
the Osher-Sethian algorithm to equations describing the
phenomena in [11, 127 is the best approach numericaily.

There are several areas requiring further investigation.
First, is there a more efficient way to perform the re-
initialization step of Section 3.3? Osher, Smereka, and
Sussman are currently implementing a method that avoids
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FI1G. 38. Tightening spiral; velocities equal, all clockwise.
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FI1G. 39. Intriguing slide from [11]

explicit location of the zero-level set. They solve a PDE
whose solution converges to the distance function used in
initializing the method. This has the advantages of being
faster and applicable more frequently than the chopping
step, so that discontinuities do not develop as rapidly.
Under the current algorithm discontinuitics develop and are
then removed. Second, the behavior of a triple junction as
the velocities approach the same magnitude and clockwise
oriefitation is unclear. As noted in Section 3, if the velocities
are set in this manner, we find after the first update step that
we have a spiral (see Fig. 38}, The triple point has reformed
at the center of the spiral, and if we were to continue the
computation the spiral would wind up further, beyond the
resolution of the grid. This phenomenon needs to be under-
stood. Third, what other stable shapes might we discover if
a different update step were taken? Rather than using

¢f=¢f—ma¥ ¢
FET)

363

we might imitate the alternative chopping schemes of the
diffusion algorithm in Section 2.2, by using some convex
combination of the surrounding ¢, rather than the maxi-
mum. Fourth, the connection between the shape on the
plane x + y + z=1 and the stable shape exhibited in com-
putations by the diffusion algerithm needs to be clarified.
Finally, the DGCDM algorithm may lead to a method for
computing convex hulls. Given a set .S, set the diffusion coef-
ficient D on that set to be zero and start diffuston-generated
motion on some large ball containing S. The bail will
collapse down onto the D=0 set and equilibrate at its
convex hull.

There are currently only two algorithms for moving mul-
tiple junctions. Each method has limitations which our new
method does not. Our method handles general velocities
directly and easily; the others either do not or they require
lengthy asymptotics to do so. There are no numerical dif-
ficulties, as in the reaction—diffusion system and the method
is easy to implement in many dimensions. The coupled
Osher—Sethian method is a powerful new tool for moving
multiple junctions. The one advantage of the reaction—diffu-
sion system proposed by [2] is in the area of analysis. Their
approach may provide an avenue for understanding the
theory behind the motion of multiple junctions, whereas
ours will efficiently compute it.
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